Asymptotic Methods for Ordinary Differential Equations
Produktnummer:
1880fa9f21f21e4e0c8cce5d3fe491cb1a
Autor: | Kuzmina, R.P. |
---|---|
Themengebiete: | Cauchy problem differential equation ordinary differential equation ordinary differential equations |
Veröffentlichungsdatum: | 15.12.2010 |
EAN: | 9789048155002 |
Sprache: | Englisch |
Seitenzahl: | 364 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Netherland |
Produktinformationen "Asymptotic Methods for Ordinary Differential Equations"
In this book we consider a Cauchy problem for a system of ordinary differential equations with a small parameter. The book is divided into th ree parts according to three ways of involving the small parameter in the system. In Part 1 we study the quasiregular Cauchy problem. Th at is, a problem with the singularity included in a bounded function j , which depends on time and a small parameter. This problem is a generalization of the regu larly perturbed Cauchy problem studied by Poincare [35]. Some differential equations which are solved by the averaging method can be reduced to a quasiregular Cauchy problem. As an example, in Chapter 2 we consider the van der Pol problem. In Part 2 we study the Tikhonov problem. This is, a Cauchy problem for a system of ordinary differential equations where the coefficients by the derivatives are integer degrees of a small parameter.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen