Advances in K-means Clustering
Produktnummer:
1880c5e3340bca4788837ad296ec9e7500
Autor: | Wu, Junjie |
---|---|
Themengebiete: | Cluster Analysis Cluster Validity Consensus Clustering Information-Theoretic Clustering K-means Point-to-Centroid Distance Rare Class Analysis Uniform Effect |
Veröffentlichungsdatum: | 10.07.2012 |
EAN: | 9783642298066 |
Sprache: | Englisch |
Seitenzahl: | 180 |
Produktart: | Gebunden |
Verlag: | Springer Berlin |
Untertitel: | A Data Mining Thinking |
Produktinformationen "Advances in K-means Clustering"
Nearly everyone knows K-means algorithm in the fields of data mining and business intelligence. But the ever-emerging data with extremely complicated characteristics bring new challenges to this "old" algorithm. This book addresses these challenges and makes novel contributions in establishing theoretical frameworks for K-means distances and K-means based consensus clustering, identifying the "dangerous" uniform effect and zero-value dilemma of K-means, adapting right measures for cluster validity, and integrating K-means with SVMs for rare class analysis. This book not only enriches the clustering and optimization theories, but also provides good guidance for the practical use of K-means, especially for important tasks such as network intrusion detection and credit fraud prediction. The thesis on which this book is based has won the "2010 National Excellent Doctoral Dissertation Award", the highest honor for not more than 100 PhD theses per year in China.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen