Produktnummer:
189fe234ba35294962b5e82cf454e879ea
Themengebiete: | active learning data analysis dimension reduction feature learning geometric measures graph algorithms manifold learning path metrics semi-supervised learning tensor decomposition |
---|---|
Veröffentlichungsdatum: | 17.08.2025 |
EAN: | 9783031878039 |
Sprache: | Englisch |
Seitenzahl: | 362 |
Produktart: | Gebunden |
Herausgeber: | Garcia-Cardona, Cristina Lee, Harlin |
Verlag: | Springer International Publishing |
Untertitel: | Women in Data Science and Mathematics (WiSDM) 2023 |
Produktinformationen "Advances in Data Science"
This volume features recent advances in data science ranging from algebraic geometry used for existence and uniqueness proofs of low rank approximations for tensor data, to category theory used for natural language processing applications, to approximation and optimization frameworks developed for convergence and robustness guarantees for deep neural networks. It provides ideas, methods, and tools developed in inherently interdisciplinary research problems requiring mathematics, computer science and data domain expertise. It also presents original results tackling real-world problems with immediate applications in industry and government.Contributions are based on the third Women in Data Science and Mathematics (WiSDM) Research collaboration Workshop that took place between August 7 and August 11, 2023 at the Institute for Pure & Applied Mathematics (IPAM) in Los Angeles, California, US. The submissions from the workshop and related groups constitute a valuable source for readers who are interested in mathematically-founded approaches to modeling data for exploration, understanding and prediction.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen