A Posteriori Error Analysis Via Duality Theory
Produktnummer:
18162e7961cc434112834cd47fd123a2d6
Autor: | Han, Weimin |
---|---|
Themengebiete: | Mathematica approximation calculus duality modeling |
Veröffentlichungsdatum: | 06.12.2010 |
EAN: | 9781441936363 |
Sprache: | Englisch |
Seitenzahl: | 302 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer US |
Untertitel: | With Applications in Modeling and Numerical Approximations |
Produktinformationen "A Posteriori Error Analysis Via Duality Theory"
This work provides a posteriori error analysis for mathematical idealizations in modeling boundary value problems, especially those arising in mechanical applications, and for numerical approximations of numerous nonlinear var- tional problems. An error estimate is called a posteriori if the computed solution is used in assessing its accuracy. A posteriori error estimation is central to m- suring, controlling and minimizing errors in modeling and numerical appr- imations. In this book, the main mathematical tool for the developments of a posteriori error estimates is the duality theory of convex analysis, documented in the well-known book by Ekeland and Temam ([49]). The duality theory has been found useful in mathematical programming, mechanics, numerical analysis, etc. The book is divided into six chapters. The first chapter reviews some basic notions and results from functional analysis, boundary value problems, elliptic variational inequalities, and finite element approximations. The most relevant part of the duality theory and convex analysis is briefly reviewed in Chapter 2.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen