A Course on Topological Vector Spaces
Produktnummer:
189b1cc030888748f9842d7397a9a44c66
Autor: | Voigt, Jürgen |
---|---|
Themengebiete: | Alaoglu-Bourbaki Krein Mackey-Arens Tikhonov bipolar theorem convex spaces polars reflexivity topology |
Veröffentlichungsdatum: | 07.03.2020 |
EAN: | 9783030329440 |
Sprache: | Englisch |
Seitenzahl: | 155 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Produktinformationen "A Course on Topological Vector Spaces"
This book provides an introduction to the theory of topological vector spaces, with a focus on locally convex spaces. It discusses topologies in dual pairs, culminating in the Mackey-Arens theorem, and also examines the properties of the weak topology on Banach spaces, for instance Banach’s theorem on weak*-closed subspaces on the dual of a Banach space (alias the Krein-Smulian theorem), the Eberlein-Smulian theorem, Krein’s theorem on the closed convex hull of weakly compact sets in a Banach space, and the Dunford-Pettis theorem characterising weak compactness in L1-spaces. Lastly, it addresses topics such as the locally convex final topology, with the application to test functions D(O) and the space of distributions, and the Krein-Milman theorem. The book adopts an “economic” approach to interesting topics, and avoids exploring all the arising side topics. Written in a concise mathematical style, it is intended primarily for advanced graduate students with a background in elementary functional analysis, but is also useful as a reference text for established mathematicians.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen