Produktnummer:
188b79dd3699554333ae8c7687b278ffac
Themengebiete: | calculus database formal method formal methods high-integrity software logic programming structured analysis |
---|---|
Veröffentlichungsdatum: | 06.08.1992 |
EAN: | 9783540197805 |
Sprache: | Englisch |
Seitenzahl: | 408 |
Produktart: | Kartoniert / Broschiert |
Herausgeber: | Nicholls, J. E. |
Verlag: | Springer Berlin |
Untertitel: | Proceedings of the Sixth Annual Z User Meeting, York 16–17 December 1991 |
Produktinformationen "Z User Workshop, York 1991"
In ordinary mathematics, an equation can be written down which is syntactically correct, but for which no solution exists. For example, consider the equation x = x + 1 defined over the real numbers; there is no value of x which satisfies it. Similarly it is possible to specify objects using the formal specification language Z [3,4], which can not possibly exist. Such specifications are called inconsistent and can arise in a number of ways. Example 1 The following Z specification of a functionf, from integers to integers "f x : ~ 1 x ~ O· fx = x + 1 (i) "f x : ~ 1 x ~ O· fx = x + 2 (ii) is inconsistent, because axiom (i) gives f 0 = 1, while axiom (ii) gives f 0 = 2. This contradicts the fact that f was declared as a function, that is, f must have a unique result when applied to an argument. Hence no suchfexists. Furthermore, iff 0 = 1 andfO = 2 then 1 = 2 can be deduced! From 1 = 2 anything can be deduced, thus showing the danger of an inconsistent specification. Note that all examples and proofs start with the word Example or Proof and end with the symbol.1.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen