Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods
Produktnummer:
18cb7bee0881984678a0c4869f971b9b8c
Autor: | Aldrich, Chris Auret, Lidia |
---|---|
Themengebiete: | Classification Trees Fault Detection Fault Identification Kernel-based Methods Neural Networks Regression Trees |
Veröffentlichungsdatum: | 23.08.2016 |
EAN: | 9781447171607 |
Sprache: | Englisch |
Seitenzahl: | 374 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer London |
Produktinformationen "Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods"
This unique text/reference describes in detail the latest advances in unsupervised process monitoring and fault diagnosis with machine learning methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data projections. Topics and features: discusses machine learning frameworks based on artificial neural networks, statistical learning theory and kernel-based methods, and tree-based methods; examines the application of machine learning to steady state and dynamic operations, with a focus on unsupervised learning; describes the use of spectral methods in process fault diagnosis.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen