Uniformization of Riemann Surfaces
Produktnummer:
18f87707674b59402eb0522c5ff67e298e
Autor: | de Saint-Gervais, Henri Paul |
---|---|
Themengebiete: | Fuchsian groups Gauss Klein Koebe Poincaré Riemann Riemann surfaces Schwarz continuity method uniformization |
Veröffentlichungsdatum: | 01.01.2016 |
EAN: | 9783037191453 |
Auflage: | 1 |
Sprache: | Englisch |
Seitenzahl: | 512 |
Produktart: | Gebunden |
Verlag: | EMS Press |
Untertitel: | Revisiting a hundred-year-old theorem |
Produktinformationen "Uniformization of Riemann Surfaces"
In 1907 Paul Koebe and Henri Poincaré almost simultaneously proved the uniformization theorem: Every simply connected Riemann surface is isomorphic to the plane, the open unit disc, or the sphere. It took a whole century to get to the point of stating this theorem and providing a convincing proof of it, relying as it did on prior work of Gauss, Riemann, Schwarz, Klein, Poincaré, and Koebe, among others. The present book offers an overview of the maturation process of this theorem. The evolution of the uniformization theorem took place in parallel with the emergence of modern algebraic geometry, the creation of complex analysis, the first stirrings of functional analysis, and with the flowering of the theory of differential equations and the birth of topology. The uniformization theorem was thus one of the lightning rods of 19th century mathematics. Rather than describe the history of a single theorem, our aim is to return to the original proofs, to look at these through the eyes of modern mathematicians, to enquire as to their correctness, and to attempt to make them rigorous while respecting insofar as possible the state of mathematical knowledge at the time, or, if this should prove impossible, then using modern mathematical tools not available to their authors. This book will be useful to today's mathematicians wishing to cast a glance back at the history of their discipline. It should also provide graduate students with a non-standard approach to concepts of great importance for modern research.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen