Two-dimensional Crossing and Product Polynomial Systems
Produktnummer:
1867751fd2734e4d4c9d5e581a7f7be1f0
Autor: | Luo, Albert C. J. |
---|---|
Themengebiete: | Crossing and Product Polynomial Systems Hybrid networks of singular and regular equilibriums Infinite-equilibriums and switching bifurcations Inflection-sink, source and saddle flows Parabola-saddles and double-inflection saddles Singular hyperbolic and hyperbolic-secant flows Singular saddle and center equilibriums |
Veröffentlichungsdatum: | 27.08.2025 |
EAN: | 9789819657148 |
Sprache: | Englisch |
Produktart: | Gebunden |
Verlag: | Springer Singapore |
Produktinformationen "Two-dimensional Crossing and Product Polynomial Systems"
This book is about hybrid networks of singular and non-singular, one-dimensional flows and equilibriums in crossing and product polynomial systems. The singular equilibriums and one-dimensional flows with infinite-equilibriums in product polynomial systems are presented in the theorem. The singular equilibriums are singular saddles and centers, parabola-saddles, and double-inflection-saddles. The singular one-dimensional flows are singular hyperbolic-flows, hyperbolic-to-hyperbolic-secant flows, inflection-source and sink flows, and inflection-saddle flows. The higher-order singular one-dimensional flows and singular equilibriums are for the appearing bifurcations of lower-order singular and non-singular one-dimensional flows and equilibriums. The infinite-equilibriums are the switching bifurcations for two associated networks of singular and non-singular, one-dimensional flows and equilibriums. The corresponding mathematical conditions are presented, and the theory for nonlinear dynamics of crossing and product polynomial systems is presented through a theorem. The mathematical proof is completed through the local analysis and the first integral manifolds. The illustrations of singular one-dimensional flows and equilibriums are completed, and the sampled networks of non-singular one-dimensional flows and equilibriums are presented in this book.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen