Two-Fluid Model Stability, Simulation and Chaos
Produktnummer:
188fc9644d781b4e29b209ccb9d0c23e08
Autor: | Bertodano, Martín López de Clausse, Alejandro Fullmer, William Ransom, Victor H. |
---|---|
Themengebiete: | Computational fluid dynamics Dispersion analysis Drift flux model Horizontal stratified wavy flow Laplace transform Linear and nonlinear fluid dynamic stability Nonlinear numerical simulations Two-phase flow analysis Vertical bubbly-slug flow |
Veröffentlichungsdatum: | 17.11.2016 |
EAN: | 9783319449678 |
Sprache: | Englisch |
Seitenzahl: | 358 |
Produktart: | Gebunden |
Verlag: | Springer International Publishing |
Produktinformationen "Two-Fluid Model Stability, Simulation and Chaos"
This book addresses the linear and nonlinear two-phase stability of the one-dimensional Two-Fluid Model (TFM) material waves and the numerical methods used to solve it. The TFM fluid dynamic stability is a problem that remains open since its inception more than forty years ago. The difficulty is formidable because it involves the combined challenges of two-phase topological structure and turbulence, both nonlinear phenomena. The one dimensional approach permits the separation of the former from the latter.The authors first analyze the kinematic and Kelvin-Helmholtz instabilities with the simplified one-dimensional Fixed-Flux Model (FFM). They then analyze the density wave instability with the well-known Drift-Flux Model. They demonstrate that the Fixed-Flux and Drift-Flux assumptions are two complementary TFM simplifications that address two-phase local and global linear instabilities separately. Furthermore, they demonstrate with a well-posed FFM and a DFM two cases ofnonlinear two-phase behavior that are chaotic and Lyapunov stable. On the practical side, they also assess the regularization of an ill-posed one-dimensional TFM industrial code. Furthermore, the one-dimensional stability analyses are applied to obtain well-posed CFD TFMs that are either stable (RANS) or Lyapunov stable (URANS), with the focus on numerical convergence.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen