Twisted Morse Complexes
Produktnummer:
18e3bf8d5235fb4384ad85fc98d79b7ef4
Autor: | Banyaga, Augustin Hurtubise, David Spaeth, Peter |
---|---|
Themengebiete: | CW-Complex H-Space Lichnerowicz Cohomology Local Coefficients Locally Conformal Symplectic Manifold Morse-Smale Morse Homology Morse Theory Novikov Homology Sheaf Cohomology |
Veröffentlichungsdatum: | 01.11.2024 |
EAN: | 9783031716164 |
Sprache: | Englisch |
Seitenzahl: | 158 |
Produktart: | Unbekannt |
Verlag: | Springer International Publishing |
Untertitel: | Morse Homology and Cohomology with Local Coefficients |
Produktinformationen "Twisted Morse Complexes"
This book gives a detailed presentation of twisted Morse homology and cohomology on closed finite-dimensional smooth manifolds. It contains a complete proof of the Twisted Morse Homology Theorem, which says that on a closed finite-dimensional smooth manifold the homology of the Morse–Smale–Witten chain complex with coefficients in a bundle of abelian groups G is isomorphic to the singular homology of the manifold with coefficients in G. It also includes proofs of twisted Morse-theoretic versions of well-known theorems such as Eilenberg's Theorem, the Poincaré Lemma, and the de Rham Theorem. The effectiveness of twisted Morse complexes is demonstrated by computing the Lichnerowicz cohomology of surfaces, giving obstructions to spaces being associative H-spaces, and computing Novikov numbers. Suitable for a graduate level course, the book may also be used as a reference for graduate students and working mathematicians or physicists.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen