The Power of q
Produktnummer:
18af187a87e1af467e92f82683e30e58d2
Autor: | Hirschhorn, Michael D. |
---|---|
Themengebiete: | Jacobi identity Ramanujan partition congruences Winquist's identity continued fraction crank of partition dissection Euler product forty identities hypergeometric series q-series quintuple product identity |
Veröffentlichungsdatum: | 16.08.2017 |
EAN: | 9783319577616 |
Sprache: | Englisch |
Seitenzahl: | 415 |
Produktart: | Gebunden |
Verlag: | Springer International Publishing |
Untertitel: | A Personal Journey |
Produktinformationen "The Power of q"
This unique book explores the world of q, known technically as basic hypergeometric series, and represents the author’s personal and life-long study—inspired by Ramanujan—of aspects of this broad topic. While the level of mathematical sophistication is graduated, the book is designed to appeal to advanced undergraduates as well as researchers in the field. The principal aims are to demonstrate the power of the methods and the beauty of the results. The book contains novel proofs of many results in the theory of partitions and the theory of representations, as well as associated identities. Though not specifically designed as a textbook, parts of it may be presented in course work; it has many suitable exercises.After an introductory chapter, the power of q-series is demonstrated with proofs of Lagrange’s four-squares theorem and Gauss’s two-squares theorem. Attention then turns to partitions and Ramanujan’s partition congruences. Several proofs of these are given throughout the book. Many chapters are devoted to related and other associated topics. One highlight is a simple proof of an identity of Jacobi with application to string theory. On the way, we come across the Rogers–Ramanujan identities and the Rogers–Ramanujan continued fraction, the famous “forty identities” of Ramanujan, and the representation results of Jacobi, Dirichlet and Lorenz, not to mention many other interesting and beautiful results. We also meet a challenge of D.H. Lehmer to give a formula for the number of partitions of a number into four squares, prove a “mysterious” partition theorem of H. Farkas and prove a conjecture of R.Wm. Gosper “which even Erdos couldn’t do.” The book concludes with a look at Ramanujan’s remarkable tau function.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen