The H-Function
Produktnummer:
18f4ce3caafc094a0eb544811f2d102da2
Autor: | Haubold, Hans J. Mathai, A.M. Saxena, Ram Kishore |
---|---|
Themengebiete: | Diffusion Disordered systems Dynamical systems theory Fractional calculus Mathai pathway models Reaction diffusion applied mathematics Stochastic theory applications H-functions applied mathematics astrophysics |
Veröffentlichungsdatum: | 30.10.2009 |
EAN: | 9781441909152 |
Sprache: | Englisch |
Seitenzahl: | 268 |
Produktart: | Gebunden |
Verlag: | Springer US |
Untertitel: | Theory and Applications |
Produktinformationen "The H-Function"
TheH-function or popularly known in the literature as Fox’sH-function has recently found applications in a large variety of problems connected with reaction, diffusion, reaction–diffusion, engineering and communication, fractional differ- tial and integral equations, many areas of theoretical physics, statistical distribution theory, etc. One of the standard books and most cited book on the topic is the 1978 book of Mathai and Saxena. Since then, the subject has grown a lot, mainly in the elds of applications. Due to popular demand, the authors were requested to - grade and bring out a revised edition of the 1978 book. It was decided to bring out a new book, mostly dealing with recent applications in statistical distributions, pa- way models, nonextensive statistical mechanics, astrophysics problems, fractional calculus, etc. and to make use of the expertise of Hans J. Haubold in astrophysics area also. It was decided to con ne the discussion toH-function of one scalar variable only. Matrix variable cases and many variable cases are not discussed in detail, but an insight into these areas is given. When going from one variable to many variables, there is nothing called a unique bivariate or multivariate analogue of a givenfunction. Whatever be the criteria used, there may be manydifferentfunctions quali ed to be bivariate or multivariate analogues of a given univariate function. Some of the bivariate and multivariateH-functions, currently in the literature, are also questioned by many authors.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen