The Geometric Hopf Invariant and Surgery Theory
Produktnummer:
18b7676670bd0e418293f57be41c0cdda3
Autor: | Crabb, Michael Ranicki, Andrew |
---|---|
Themengebiete: | MSC (2010): 55Q25, 57R42 algebraic surgery coordinate-free approach to stable homotopy theory difference construction chain homotopy difference construction homotopy doube points of maps double point theorem geometric Hopf invariant inner product spaces manifolds |
Veröffentlichungsdatum: | 06.02.2018 |
EAN: | 9783319713052 |
Sprache: | Englisch |
Seitenzahl: | 397 |
Produktart: | Gebunden |
Verlag: | Springer International Publishing |
Produktinformationen "The Geometric Hopf Invariant and Surgery Theory"
Written by leading experts in the field, this monograph provides homotopy theoretic foundations for surgery theory on higher-dimensional manifolds.Presenting classical ideas in a modern framework, the authors carefully highlight how their results relate to (and generalize) existing results in the literature. The central result of the book expresses algebraic surgery theory in terms of the geometric Hopf invariant, a construction in stable homotopy theory which captures the double points of immersions. Many illustrative examples and applications of the abstract results are included in the book, making it of wide interest to topologists. Serving as a valuable reference, this work is aimed at graduate students and researchers interested in understanding how the algebraic and geometric topology fit together in the surgery theory of manifolds. It is the only book providing such a wide-ranging historical approach to the Hopf invariant, double points and surgery theory, withmany results old and new.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen