Technical Analysis for Algorithmic Pattern Recognition
Produktnummer:
18f4596ddd3e534eaeae0c313d1eae4469
Autor: | Tsinaslanidis, Prodromos E. Zapranis, Achilleas D. |
---|---|
Themengebiete: | Algorithmic Pattern Recognition Efficient Market Hypothesis Financial Markets Technical Analysis Trading Strategies quantitative finance |
Veröffentlichungsdatum: | 23.08.2016 |
EAN: | 9783319353951 |
Sprache: | Englisch |
Seitenzahl: | 204 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Produktinformationen "Technical Analysis for Algorithmic Pattern Recognition"
The main purpose of this book is to resolve deficiencies and limitations that currently exist when using Technical Analysis (TA). Particularly, TA is being used either by academics as an “economic test” of the weak-form Efficient Market Hypothesis (EMH) or by practitioners as a main or supplementary tool for deriving trading signals. This book approaches TA in a systematic way utilizing all the available estimation theory and tests. This is achieved through the developing of novel rule-based pattern recognizers, and the implementation of statistical tests for assessing the importance of realized returns. More emphasis is given to technical patterns where subjectivity in their identification process is apparent. Our proposed methodology is based on the algorithmic and thus unbiased pattern recognition. The unified methodological framework presented in this book can serve as a benchmark for both future academic studies that test the null hypothesis of the weak-form EMH and for practitioners that want to embed TA within their trading/investment decision making processes.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen