Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Supporting the Understanding of Rare Disease Diagnostics with Questionnaire-Based Data Analysis and Computer-Aided Classifier Fusion

47,50 €*

Sofort verfügbar, Lieferzeit: 1-3 Tage

Produktnummer: 184f4a8cc21e6341449195983a06492b2b
Autor: Zhang, Xiaowei
Themengebiete: Advanced Data Analytics Classifier Fusion Diagnostic System Pattern Visualization Rare Diseases
Veröffentlichungsdatum: 21.06.2023
EAN: 9783832556686
Sprache: Englisch
Seitenzahl: 178
Produktart: Kartoniert / Broschiert
Verlag: Logos Berlin
Produktinformationen "Supporting the Understanding of Rare Disease Diagnostics with Questionnaire-Based Data Analysis and Computer-Aided Classifier Fusion"
Orphan diseases pose diagnostic challenges due to complex pathologies, limited epidemiological data, and clinical experience. The development of artificial intelligence and machine learning methods has the potential to enhance the accuracy of decision support systems, improving diagnosis outcomes for rare disease patients. This research aims to create a repository for characterizing rare diseases by collecting past experiences of diagnosed patients, reducing gaps in symptom interpretation. This interdisciplinary study, in collaboration with medical experts, has resulted in a computer-aided diagnostic support system utilizing statistical analysis and machine learning algorithms. The system incorporates disease profile aggregation, pattern recognition, and information comparison. An interactive data visualization platform has been established to promote intuitive understanding and evaluate system diagnosis with graphics-based disease feature comparison. It supports medical practitioners during the diagnostic process by presenting visually appealing information. The patient-oriented inquiry mechanism efficiently reduces unnecessary questions while providing a reliable diagnosis based on probability. By combining statistical learning with the visualization module, the system can discover disease-related symptom patterns, offering new means for diagnosing rare disorders. The supplementary diagnosis prediction mechanism can be applied effectively to analyze different groups in surveyswith closed-ended questions.

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen