Supporting the Understanding of Rare Disease Diagnostics with Questionnaire-Based Data Analysis and Computer-Aided Classifier Fusion
Produktnummer:
184f4a8cc21e6341449195983a06492b2b
Autor: | Zhang, Xiaowei |
---|---|
Themengebiete: | Advanced Data Analytics Classifier Fusion Diagnostic System Pattern Visualization Rare Diseases |
Veröffentlichungsdatum: | 21.06.2023 |
EAN: | 9783832556686 |
Sprache: | Englisch |
Seitenzahl: | 178 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Logos Berlin |
Produktinformationen "Supporting the Understanding of Rare Disease Diagnostics with Questionnaire-Based Data Analysis and Computer-Aided Classifier Fusion"
Orphan diseases pose diagnostic challenges due to complex pathologies, limited epidemiological data, and clinical experience. The development of artificial intelligence and machine learning methods has the potential to enhance the accuracy of decision support systems, improving diagnosis outcomes for rare disease patients. This research aims to create a repository for characterizing rare diseases by collecting past experiences of diagnosed patients, reducing gaps in symptom interpretation. This interdisciplinary study, in collaboration with medical experts, has resulted in a computer-aided diagnostic support system utilizing statistical analysis and machine learning algorithms. The system incorporates disease profile aggregation, pattern recognition, and information comparison. An interactive data visualization platform has been established to promote intuitive understanding and evaluate system diagnosis with graphics-based disease feature comparison. It supports medical practitioners during the diagnostic process by presenting visually appealing information. The patient-oriented inquiry mechanism efficiently reduces unnecessary questions while providing a reliable diagnosis based on probability. By combining statistical learning with the visualization module, the system can discover disease-related symptom patterns, offering new means for diagnosing rare disorders. The supplementary diagnosis prediction mechanism can be applied effectively to analyze different groups in surveyswith closed-ended questions.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen