Stochastic Porous Media Equations
Produktnummer:
1862461330c5e84d97a0bc93fe245ded69
Autor: | Barbu, Viorel Da Prato, Giuseppe Röckner, Michael |
---|---|
Themengebiete: | Gaussian Noise Porous Media Equations Primary: 60H15, 35K55, Secondary: 76S99, 76M30, 76M35 Self organizing criticality Stochastic PDEs Stochastic Processes fluid- and aerodynamics partial differential equations |
Veröffentlichungsdatum: | 01.10.2016 |
EAN: | 9783319410685 |
Sprache: | Englisch |
Seitenzahl: | 202 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Produktinformationen "Stochastic Porous Media Equations"
Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found.The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model".The book will be of interest to PhD students and researchers in mathematics, physics and biology.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen