Smoothness Priors Analysis of Time Series
Produktnummer:
18ef8adb10d09942ea9075b32d3e039f87
Autor: | Gersch, Will Kitagawa, Genshiro |
---|---|
Themengebiete: | Likelihood Smooth function Time series Variance calculus classification data analysis differential equation maximum measure |
Veröffentlichungsdatum: | 09.08.1996 |
EAN: | 9780387948195 |
Sprache: | Englisch |
Seitenzahl: | 280 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer US |
Produktinformationen "Smoothness Priors Analysis of Time Series"
Smoothness Priors Analysis of Time Series addresses some of the problems of modeling stationary and nonstationary time series primarily from a Bayesian stochastic regression "smoothness priors" state space point of view. Prior distributions on model coefficients are parametrized by hyperparameters. Maximizing the likelihood of a small number of hyperparameters permits the robust modeling of a time series with relatively complex structure and a very large number of implicitly inferred parameters. The critical statistical ideas in smoothness priors are the likelihood of the Bayesian model and the use of likelihood as a measure of the goodness of fit of the model. The emphasis is on a general state space approach in which the recursive conditional distributions for prediction, filtering, and smoothing are realized using a variety of nonstandard methods including numerical integration, a Gaussian mixture distribution-two filter smoothing formula, and a Monte Carlo "particle-path tracing" method in which the distributions are approximated by many realizations. The methods are applicable for modeling time series with complex structures.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen