Robust Subspace Estimation Using Low-Rank Optimization
Produktnummer:
180641845832fb43088882362cc035c8de
Autor: | Oreifej, Omar Shah, Mubarak |
---|---|
Themengebiete: | Activity recognition complex event recognition computer vision image processing low-rank optimization machine learning motion decomposition motion estimation particle advection principal component analysis |
Veröffentlichungsdatum: | 23.08.2016 |
EAN: | 9783319352480 |
Sprache: | Englisch |
Seitenzahl: | 114 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Untertitel: | Theory and Applications |
Produktinformationen "Robust Subspace Estimation Using Low-Rank Optimization"
Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace. Examples of such applications include face detection, motion estimation, and activity recognition. An increasing interest has been recently placed on this area as a result of significant advances in the mathematics of matrix rank optimization. Interestingly, robust subspace estimation can be posed as a low-rank optimization problem, which can be solved efficiently using techniques such as the method of Augmented Lagrange Multiplier. In this book, the authors discuss fundamental formulations and extensions for low-rank optimization-based subspace estimation and representation. By minimizing the rank of the matrix containing observations drawn from images, the authors demonstrate how to solve four fundamental computer vision problems, including video denosing, background subtraction, motion estimation, and activity recognition.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen