Robust Recognition via Information Theoretic Learning
Produktnummer:
18017fa183b8d34e7cb80bc4b158d40380
Autor: | He, Ran Hu, Baogang Wang, Liang Yuan, Xiaotong |
---|---|
Themengebiete: | Face recognition information theoretic learning large scale robust estimation sparse representation |
Veröffentlichungsdatum: | 09.09.2014 |
EAN: | 9783319074153 |
Sprache: | Englisch |
Seitenzahl: | 110 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Produktinformationen "Robust Recognition via Information Theoretic Learning"
This Springer Brief represents a comprehensive review of information theoretic methods for robust recognition. A variety of information theoretic methods have been proffered in the past decade, in a large variety of computer vision applications; this work brings them together, attempts to impart the theory, optimization and usage of information entropy.The authors resort to a new information theoretic concept, correntropy, as a robust measure and apply it to solve robust face recognition and object recognition problems. For computational efficiency, the brief introduces the additive and multiplicative forms of half-quadratic optimization to efficiently minimize entropy problems and a two-stage sparse presentation framework for large scale recognition problems. It also describes the strengths and deficiencies of different robust measures in solving robust recognition problems.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen