Representation in Machine Learning
Produktnummer:
18177d72f2765d45b3836483e2b2a3fbd7
Autor: | Avinash, M. Murty, M. N. |
---|---|
Themengebiete: | Artificial Intelligence Autoencoder Data Mining Dimensionality Reduction Locality Sensitive Hashing Machine Learning Principal Component Representation |
Veröffentlichungsdatum: | 21.01.2023 |
EAN: | 9789811979071 |
Sprache: | Englisch |
Seitenzahl: | 93 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Singapore |
Produktinformationen "Representation in Machine Learning"
This book provides a concise but comprehensive guide to representation, which forms the core of Machine Learning (ML). State-of-the-art practical applications involve a number of challenges for the analysis of high-dimensional data. Unfortunately, many popular ML algorithms fail to perform, in both theory and practice, when they are confronted with the huge size of the underlying data. Solutions to this problem are aptly covered in the book. In addition, the book covers a wide range of representation techniques that are important for academics and ML practitioners alike, such as Locality Sensitive Hashing (LSH), Distance Metrics and Fractional Norms, Principal Components (PCs), Random Projections and Autoencoders. Several experimental results are provided in the book to demonstrate the discussed techniques’ effectiveness.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen