Representation Learning
Produktnummer:
1890c0ae7b3c7f430fa8fd9be602e6c23e
Autor: | Lavrac, Nada Podpecan, Vid Robnik-Šikonja, Marko |
---|---|
Themengebiete: | data fusion embeddings feature construction heterogeneous data mining networks ontologies propositionalization relational data mining semantic data mining texts |
Veröffentlichungsdatum: | 11.07.2022 |
EAN: | 9783030688196 |
Sprache: | Englisch |
Seitenzahl: | 163 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Untertitel: | Propositionalization and Embeddings |
Produktinformationen "Representation Learning"
This monograph addresses advances in representation learning, a cutting-edge research area of machine learning. Representation learning refers to modern data transformation techniques that convert data of different modalities and complexity, including texts, graphs, and relations, into compact tabular representations, which effectively capture their semantic properties and relations. The monograph focuses on (i) propositionalization approaches, established in relational learning and inductive logic programming, and (ii) embedding approaches, which have gained popularity with recent advances in deep learning. The authors establish a unifying perspective on representation learning techniques developed in these various areas of modern data science, enabling the reader to understand the common underlying principles and to gain insight using selected examples and sample Python code. The monograph should be of interest to a wide audience, ranging from data scientists, machine learning researchers and students to developers, software engineers and industrial researchers interested in hands-on AI solutions.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen