Regularized System Identification
Produktnummer:
1878396ce8f49b4fa7933074e3af0ec957
Autor: | Chen, Tianshi Chiuso, Alessandro De Nicolao, Giuseppe Ljung, Lennart Pillonetto, Gianluigi |
---|---|
Themengebiete: | Bayesian Interpretation of Regularization Estimation Theory Gaussian Processes Kernel-based Regularization Linear Dynamical Systems Machine Learning Nonlinear Dynamical Systems Reproducing Kernel Hilbert Spaces Support Vector Machines System Identification |
Veröffentlichungsdatum: | 14.05.2022 |
EAN: | 9783030958596 |
Sprache: | Englisch |
Seitenzahl: | 377 |
Produktart: | Gebunden |
Verlag: | Springer International Publishing |
Untertitel: | Learning Dynamic Models from Data |
Produktinformationen "Regularized System Identification"
This open access book provides a comprehensive treatment of recent developments in kernel-based identification that are of interest to anyone engaged in learning dynamic systems from data. The reader is led step by step into understanding of a novel paradigm that leverages the power of machine learning without losing sight of the system-theoretical principles of black-box identification. The authors’ reformulation of the identification problem in the light of regularization theory not only offers new insight on classical questions, but paves the way to new and powerful algorithms for a variety of linear and nonlinear problems. Regression methods such as regularization networks and support vector machines are the basis of techniques that extend the function-estimation problem to the estimation of dynamic models. Many examples, also from real-world applications, illustrate the comparative advantages of the new nonparametric approach with respect to classic parametric prediction error methods.The challenges it addresses lie at the intersection of several disciplines so Regularized System Identification will be of interest to a variety of researchers and practitioners in the areas of control systems, machine learning, statistics, and data science.This is an open access book.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen