Realtime Data Mining
Produktnummer:
18296de589415c45018763f482b3ab0399
Autor: | Paprotny, Alexander Thess, Michael |
---|---|
Themengebiete: | Markov decision process collaborative filtering hierarchical methods real-time analysis recommendation systems reinforcement learning |
Veröffentlichungsdatum: | 27.08.2016 |
EAN: | 9783319344454 |
Sprache: | Englisch |
Seitenzahl: | 313 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Untertitel: | Self-Learning Techniques for Recommendation Engines |
Produktinformationen "Realtime Data Mining"
Describing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore, it presents promising results of numerous experiments on real-world data. The area of realtime data mining is currently developing at an exceptionally dynamic pace, and realtime data mining systems are the counterpart of today's “classic” data mining systems. Whereas the latter learn from historical data and then use it to deduce necessary actions, realtime analytics systems learn and act continuously and autonomously. In the vanguard of these new analytics systems are recommendation engines. They are principally found on the Internet, where all information is available in realtime and an immediate feedback is guaranteed. This monograph appeals to computer scientists and specialists in machine learning, especially from the area of recommender systems, because it conveys a new way of realtime thinking by considering recommendation tasks as control-theoretic problems. Realtime Data Mining:Self-Learning Techniques for Recommendation Engines will also interest application-oriented mathematicians because it consistently combines some of the most promising mathematical areas, namely control theory, multilevel approximation, and tensor factorization.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen