Quadratic Residues and Non-Residues
Produktnummer:
1875596d4137684ff49301d9d795804d73
Autor: | Wright, Steve |
---|---|
Themengebiete: | 11-XX 12D05, 13B05, 52C05, 42A16, 42A20 distribution of quadratic residues law of quadratic reciprocity quadratic non-residues quadratic residues quadratic residues in arithmetic progression |
Veröffentlichungsdatum: | 15.11.2016 |
EAN: | 9783319459547 |
Sprache: | Englisch |
Seitenzahl: | 292 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Untertitel: | Selected Topics |
Produktinformationen "Quadratic Residues and Non-Residues"
This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen