Privacy-Preserving Machine Learning
Produktnummer:
180e35981cfb9f4afcaa11d8d59a02b100
Autor: | Chen, Xiaofeng Li, Jin Li, Ping Li, Tong Liu, Zheli |
---|---|
Themengebiete: | Artificial Intelligence Data Encryption Machine Learning Neural Network Privacy-preserving Technique Secure Computation |
Veröffentlichungsdatum: | 15.03.2022 |
EAN: | 9789811691386 |
Sprache: | Englisch |
Seitenzahl: | 88 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Singapore |
Produktinformationen "Privacy-Preserving Machine Learning"
This book provides a thorough overview of the evolution of privacy-preserving machine learning schemes over the last ten years, after discussing the importance of privacy-preserving techniques. In response to the diversity of Internet services, data services based on machine learning are now available for various applications, including risk assessment and image recognition. In light of open access to datasets and not fully trusted environments, machine learning-based applications face enormous security and privacy risks. In turn, it presents studies conducted to address privacy issues and a series of proposed solutions for ensuring privacy protection in machine learning tasks involving multiple parties. In closing, the book reviews state-of-the-art privacy-preserving techniques and examines the security threats they face.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen