Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Polynomial Chaos Methods for Hyperbolic Partial Differential Equations

139,09 €*

Sofort verfügbar, Lieferzeit: 1-3 Tage

Produktnummer: 18b7b9fa4bca5d488d88b3500313d22ebb
Autor: Iaccarino, Gianluca Nordström, Jan Pettersson, Mass Per
Themengebiete: Computational Fluid Dynamics Hyperbolic Partial Differential Equations Numerical Analysis Stochastic Galerkin Methods Uncertainty Quantification fluid- and aerodynamics
Veröffentlichungsdatum: 26.03.2015
EAN: 9783319107134
Sprache: Englisch
Seitenzahl: 214
Produktart: Gebunden
Verlag: Springer International Publishing
Untertitel: Numerical Techniques for Fluid Dynamics Problems in the Presence of Uncertainties
Produktinformationen "Polynomial Chaos Methods for Hyperbolic Partial Differential Equations"
This monograph presents computational techniques and numerical analysis to study conservation laws under uncertainty using the stochastic Galerkin formulation. With the continual growth of computer power, these methods are becoming increasingly popular as an alternative to more classical sampling-based techniques. The text takes advantage of stochastic Galerkin projections applied to the original conservation laws to produce a large system of modified partial differential equations, the solutions to which directly provide a full statistical characterization of the effect of uncertainties. Polynomial Chaos Methods of Hyperbolic Partial Differential Equations focuses on the analysis of stochastic Galerkin systems obtained for linear and non-linear convection-diffusion equations and for a systems of conservation laws; a detailed well-posedness and accuracy analysis is presented to enable the design of robust and stable numerical methods. The exposition is restricted to one spatial dimension and one uncertain parameter as its extension is conceptually straightforward. The numerical methods designed guarantee that the solutions to the uncertainty quantification systems will converge as the mesh size goes to zero.Examples from computational fluid dynamics are presented together with numerical methods suitable for the problem at hand: stable high-order finite-difference methods based on summation-by-parts operators for smooth problems, and robust shock-capturing methods for highly nonlinear problems.Academics and graduate students interested in computational fluid dynamics and uncertainty quantification will find this book of interest. Readers are expected to be familiar with the fundamentals of numerical analysis. Some background in stochastic methods is useful but notnecessary.

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen