Numerical Analysis of Invariant Manifolds Characterized by Quasi-Periodic Oscillations of Nonlinear Systems
Produktnummer:
18af598da9360240a2a0e8e441d4ce9f38
Autor: | Fiedler, Robert |
---|---|
Themengebiete: | Continuation Finite difference method Invariant manifold Quasi-periodic oscillation Shooting method Shooting method for quasi-periodic oscillation Stability analysis Stability analysis of quasi-periodic oscillation |
Veröffentlichungsdatum: | 31.05.2021 |
EAN: | 9783737609487 |
Sprache: | Englisch |
Seitenzahl: | 251 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Kassel University Press |
Produktinformationen "Numerical Analysis of Invariant Manifolds Characterized by Quasi-Periodic Oscillations of Nonlinear Systems"
Quasi-periodic motions systematically occur, when a system is subjected to multiple unrelated excitation mechanisms. Since unrelated mechanisms generically exhibit independent frequencies, the resulting motion is characterized by multiple fundamental frequencies. Consequently, the resulting motion is not periodic, but, due to the independent frequencies, sort of periodic, namely quasi-periodic. Not being able to identify one unique fundamental frequency, established methods for the identification of periodic motions are impracticable. In order to calculate and analyze a quasi-periodic motion, approaches to the invariant toroidal manifold, which is the hull of a quasi-periodic motion, are utilized. This thesis provides the theoretical frameworks for the developed analyzing program Quont, which is capable of calculating, analyzing and continuing quasi-periodic motions of arbitrary dynamical systems.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen