Nonlinear Optimization
Produktnummer:
18f8d64d661a1445dea34034173ced5939
Autor: | Bomze, Immanuel M. Demyanov, Vladimir F. Fletcher, Roger Terlaky, Tamás |
---|---|
Themengebiete: | global optimization interior point methods linear optimization nonlinear optimization nonlinear programming nonsmooth optimization optimization sequential quadratic programming |
Veröffentlichungsdatum: | 24.03.2010 |
EAN: | 9783642113383 |
Sprache: | Englisch |
Seitenzahl: | 279 |
Produktart: | Kartoniert / Broschiert |
Herausgeber: | Di Pillo, Gianni Schoen, Fabio |
Verlag: | Springer Berlin |
Untertitel: | Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, July 1-7, 2007 |
Produktinformationen "Nonlinear Optimization"
This volume collects the expanded notes of four series of lectures given on the occasion of the CIME course on Nonlinear Optimization held in Cetraro, Italy, from July 1 to 7, 2007. The Nonlinear Optimization problem of main concern here is the problem n of determining a vector of decision variables x ? R that minimizes (ma- n mizes) an objective function f(·): R ? R,when x is restricted to belong n to some feasible setF? R , usually described by a set of equality and - n n m equality constraints: F = {x ? R : h(x)=0,h(·): R ? R ; g(x) ? 0, n p g(·): R ? R }; of course it is intended that at least one of the functions f,h,g is nonlinear. Although the problem canbe stated in verysimpleterms, its solution may result very di?cult due to the analytical properties of the functions involved and/or to the number n,m,p of variables and constraints. On the other hand, the problem has been recognized to be of main relevance in engineering, economics, and other applied sciences, so that a great lot of e?ort has been devoted to develop methods and algorithms able to solve the problem even in its more di?cult and large instances. The lectures have been given by eminent scholars, who contributed to a great extent to the development of Nonlinear Optimization theory, methods and algorithms. Namely, they are: – Professor Immanuel M.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen