Néron Models and Base Change
Produktnummer:
1807426077d89c4a9da2668715d9b3d603
Autor: | Halle, Lars Halvard Nicaise, Johannes |
---|---|
Themengebiete: | 14K15, 14H40, 14G22, 14E18 Jacobians Néron models Semi-abelian varieties base change conductor motivic zeta functions |
Veröffentlichungsdatum: | 03.03.2016 |
EAN: | 9783319266374 |
Sprache: | Englisch |
Seitenzahl: | 151 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Produktinformationen "Néron Models and Base Change"
Presenting the first systematic treatment of the behavior of Néron models under ramified base change, this book can be read as an introduction to various subtle invariants and constructions related to Néron models of semi-abelian varieties, motivated by concrete research problems and complemented with explicit examples. Néron models of abelian and semi-abelian varieties have become an indispensable tool in algebraic and arithmetic geometry since Néron introduced them in his seminal 1964 paper. Applications range from the theory of heights in Diophantine geometry to Hodge theory. We focus specifically on Néron component groups, Edixhoven’s filtration and the base change conductor of Chai and Yu, and we study these invariants using various techniques such as models of curves, sheaves on Grothendieck sites and non-archimedean uniformization. We then apply our results to the study of motivic zeta functions of abelian varieties. The final chapter contains alist of challenging open questions. This book is aimed towards researchers with a background in algebraic and arithmetic geometry.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen