Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Multivariate Reduced-Rank Regression

117,69 €*

Sofort verfügbar, Lieferzeit: 1-3 Tage

Produktnummer: 184088783f36984480a3fc788fa15ecc41
Autor: Chen, Kun Reinsel, Gregory C. Velu, Raja P.
Themengebiete: generalized reduced-rank regression high-dimensional reduced-rank regression low-rank regression methods mixed data multivariate analysis non-Gaussian sparse regression methods tensor data
Veröffentlichungsdatum: 01.12.2022
EAN: 9781071627914
Auflage: 2
Sprache: Englisch
Seitenzahl: 411
Produktart: Kartoniert / Broschiert
Verlag: Springer US
Untertitel: Theory, Methods and Applications
Produktinformationen "Multivariate Reduced-Rank Regression"
This book provides an account of multivariate reduced-rank regression, a tool of multivariate analysis that enjoys a broad array of applications. In addition to a historical review of the topic, its connection to other widely used statistical methods, such as multivariate analysis of variance (MANOVA), discriminant analysis, principal components, canonical correlation analysis, and errors-in-variables models, is also discussed.This new edition incorporates Big Data methodology and its applications, as well as high-dimensional reduced-rank regression, generalized reduced-rank regression with complex data, and sparse and low-rank regression methods. Each chapter contains developments of basic theoretical results, as well as details on computational procedures, illustrated with numerical examples drawn from disciplines such as biochemistry, genetics, marketing, and finance. This book is designed for advanced students, practitioners, and researchers, who may deal withmoderate and high-dimensional multivariate data. Because regression is one of the most popular statistical methods, the multivariate regression analysis tools described should provide a natural way of looking at large (both cross-sectional and chronological) data sets. This book can be assigned in seminar-type courses taken by advanced graduate students in statistics, machine learning, econometrics, business, and engineering.

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen