Model Selection and Error Estimation in a Nutshell
Produktnummer:
1870f49d6fea224d0fa54b9e772855c99e
Autor: | Oneto, Luca |
---|---|
Themengebiete: | Complexity-Based Methods Compression Bound Empirical Data Error Estimation Model Selection Rademacher Complexity Theory Resampling Methods Statistical Learning Theory Union and Shell Bounds Vapnik-Chernovenkis Theory |
Veröffentlichungsdatum: | 17.07.2019 |
EAN: | 9783030243593 |
Sprache: | Englisch |
Seitenzahl: | 132 |
Produktart: | Unbekannt |
Verlag: | Springer International Publishing |
Produktinformationen "Model Selection and Error Estimation in a Nutshell"
How can we select the best performing data-driven model? How can we rigorously estimate its generalization error? Statistical learning theory answers these questions by deriving non-asymptotic bounds on the generalization error of a model or, in other words, by upper bounding the true error of the learned model based just on quantities computed on the available data. However, for a long time, Statistical learning theory has been considered only an abstract theoretical framework, useful for inspiring new learning approaches, but with limited applicability to practical problems. The purpose of this book is to give an intelligible overview of the problems of model selection and error estimation, by focusing on the ideas behind the different statistical learning theory approaches and simplifying most of the technical aspects with the purpose of making them more accessible and usable in practice. The book starts by presenting the seminal works of the 80’s and includes the most recent results. It discusses open problems and outlines future directions for research.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen