Metric Measure Geometry
Produktnummer:
1877074458814248718186d756e3590ae4
Autor: | Shioya, Takashi |
---|---|
Themengebiete: | Laplacian concentration of measure phenomenon convergence of space curvature-dimension condition dissipation metric measure space observable distance pyramid |
Veröffentlichungsdatum: | 05.01.2016 |
EAN: | 9783037191583 |
Sprache: | Englisch |
Seitenzahl: | 194 |
Produktart: | Gebunden |
Verlag: | EMS Press |
Untertitel: | Gromov’s Theory of Convergence and Concentration of Metrics and Measures |
Produktinformationen "Metric Measure Geometry"
This book studies a new theory of metric geometry on metric measure spaces, originally developed by M. Gromov in his book “Metric Structures for Riemannian and Non-Riemannian Spaces” and based on the idea of the concentration of measure phenomenon due to Lévy and Milman. A central theme in this text is the study of the observable distance between metric measure spaces, defined by the difference between 1-Lipschitz functions on one space and those on the other. The topology on the set of metric measure spaces induced by the observable distance function is weaker than the measured Gromov–Hausdorff topology and allows to investigate a sequence of Riemannian manifolds with unbounded dimensions. One of the main parts of this presentation is the discussion of a natural compactification of the completion of the space of metric measure spaces. The stability of the curvature-dimension condition is also discussed. This book makes advanced material accessible to researchers and graduate students interested in metric measure spaces.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen