Measure and Integration
Produktnummer:
18f9410715bfb94952a7c9fef7b3352b73
Autor: | Salamon, Dietmar A. |
---|---|
Themengebiete: | Alexandrov Double Arrow Space Borel measure Caratheodory criterion Dieudonné’s measure Jensen’s inequality Lebesgue measure Lebesgue monotone convergence Riesz Representation Theorem Sorgenfrey Line separability |
Veröffentlichungsdatum: | 01.03.2016 |
EAN: | 9783037191590 |
Sprache: | Englisch |
Seitenzahl: | 363 |
Produktart: | Gebunden |
Verlag: | EMS Press |
Produktinformationen "Measure and Integration"
The book is intended as a companion to a one semester introductory lecture course on measure and integration. After an introduction to abstract measure theory it proceeds to the construction of the Lebesgue measure and of Borel measures on locally compact Hausdorff spaces, Lp spaces and their dual spaces and elementary Hilbert space theory. Special features include the formulation of the Riesz Representation Theorem in terms of both inner and outer regularity, the proofs of the Marcinkiewicz Interpolation Theorem and the Calderon–Zygmund inequality as applications of Fubini’s theorem and Lebesgue differentiation, the treatment of the generalized Radon–Nikodym theorem due to Fremlin, and the existence proof for Haar measures. Three appendices deal with Urysohn’s Lemma, product topologies, and the inverse function theorem. The book assumes familiarity with first year analysis and linear algebra. It is suitable for second year undergraduate students of mathematics or anyone desiring an introduction to the concepts of measure and integration.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen