Mathematical Models for Suspension Bridges
Produktnummer:
18d5159b66ddda40b6972ed00714f6afd9
Autor: | Gazzola, Filippo |
---|---|
Themengebiete: | Dynamical systems Instability and chaos Nonlinear elasticity Ordinary Differenatial Equations Partial Differential Equations Poincaré maps and Hill equation ordinary differential equations |
Veröffentlichungsdatum: | 09.10.2016 |
EAN: | 9783319368573 |
Sprache: | Englisch |
Seitenzahl: | 259 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Untertitel: | Nonlinear Structural Instability |
Produktinformationen "Mathematical Models for Suspension Bridges"
This work provides a detailed and up-to-the-minute survey of the various stability problems that can affect suspension bridges. In order to deduce some experimental data and rules on the behavior of suspension bridges, a number of historical events are first described, in the course of which several questions concerning their stability naturally arise. The book then surveys conventional mathematical models for suspension bridges and suggests new nonlinear alternatives, which can potentially supply answers to some stability questions. New explanations are also provided, based on the nonlinear structural behavior of bridges. All the models and responses presented in the book employ the theory of differential equations and dynamical systems in the broader sense, demonstrating that methods from nonlinear analysis can allow us to determine the thresholds of instability.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen