Mathematical Aspects of Evolving Interfaces
Produktnummer:
1896b5abc78c7543388f028f8315383e2a
Autor: | Ambrosio, Luigi Deckelnick, Klaus Dziuk, Gerhard Mimura, Masayasu Solonnikov, Vsvolod Soner, Halil Mete |
---|---|
Themengebiete: | Mean curvature Navier-Stokes equation curvature differential equation dynamics for Ginzburg-Landau functional dynamics of patterns and interfaces free boundary problems mean curvature flow optimal transport partial differential equations |
Veröffentlichungsdatum: | 12.06.2003 |
EAN: | 9783540140337 |
Sprache: | Englisch |
Seitenzahl: | 248 |
Produktart: | Kartoniert / Broschiert |
Herausgeber: | Colli, Pierluigi |
Verlag: | Springer Berlin |
Untertitel: | Lectures given at the C.I.M.-C.I.M.E. joint Euro-Summer School held in Madeira Funchal, Portugal, July 3-9, 2000 |
Produktinformationen "Mathematical Aspects of Evolving Interfaces"
Interfaces are geometrical objects modelling free or moving boundaries and arise in a wide range of phase change problems in physical and biological sciences, particularly in material technology and in dynamics of patterns. Especially in the end of last century, the study of evolving interfaces in a number of applied fields becomes increasingly important, so that the possibility of describing their dynamics through suitable mathematical models became one of the most challenging and interdisciplinary problems in applied mathematics. The 2000 Madeira school reported on mathematical advances in some theoretical, modelling and numerical issues concerned with dynamics of interfaces and free boundaries. Specifically, the five courses dealt with an assessment of recent results on the optimal transportation problem, the numerical approximation of moving fronts evolving by mean curvature, the dynamics of patterns and interfaces in some reaction-diffusion systems with chemical-biological applications, evolutionary free boundary problems of parabolic type or for Navier-Stokes equations, and a variational approach to evolution problems for the Ginzburg-Landau functional.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen