Maß- und Integrationstheorie
Produktnummer:
186de54ad9f26740b1badee8714a651443
Autor: | Bauer, Heinz |
---|---|
Themengebiete: | FREMDGEWORDENER Integrals Integration Integrationstheorie Maßtheorie Measure theory |
Veröffentlichungsdatum: | 01.07.1992 |
EAN: | 9783110136265 |
Auflage: | 2 |
Sprache: | Deutsch |
Seitenzahl: | 278 |
Produktart: | Gebunden |
Verlag: | De Gruyter |
Produktinformationen "Maß- und Integrationstheorie"
Frontmatter -- Kapitel I Maßtheorie -- § 1. s-Algebren und ihre Erzeuger -- § 2. Dynkin-Systeme -- § 3. Inhalte, Prämaße, Maße -- § 4. Lebesguesches Prämaß -- § 5. Fortsetzung eines Prämaßes zu einem Maß -- § 6. Lebesgue-Borelsches Maß und Maße auf der Zahlengeraden -- § 7. Meßbare Abbildungen und Bildmaße -- § 8. Abbildungseigenschaften des Lebesgue-Borelschen Maßes -- Kapitel II Integrationstheorie -- § 9. Meßbare numerische Funktionen -- § 10. Elementarfunktionen und ihr Integral -- § 11. Das Integral nichtnegativer meßbarer Funktionen -- § 12. Integrierbarkeit -- § 13. Fast überall bestehende Eigenschaften -- § 14. Die Räume Lp (µ) -- § 15. Konvergenzsätze -- § 16. Anwendungen der Konvergenzsätze -- § 17. Maße mit Dichten – Satz von Radon-Nikodym -- § 18* Signierte Maße -- § 19. Integration bezüglich eines Bildmaßes -- § 20. Stochastische Konvergenz -- § 21. Gleichgradige Integrierbarkeit -- Kapitel III Produktmaße -- § 22. Produkte von s-Algebren und Maßen -- § 23. Produktmaße und Satz von Fubini -- §24. Faltung endlicher Borel-Maße -- Kapitel IV Maße auf topologischen Räumen -- § 25. Borelsche Mengen, Borel- und Radon-Maße -- § 26. Radon-Maße auf polnischen Räumen -- § 27. Eigenschaften lokal-kompakter Räume -- § 28. Konstruktion von Radon-Maßen auf lokal-kompakten Räumen -- § 29. Rieszscher Darstellungssatz -- § 30. Konvergenz von Radon-Maßen -- § 31. Vage Kompaktheit und Metrisierbarkeitsfragen -- Literaturverzeichnis -- Symbol-Verzeichnis -- Sach- und Namenverzeichnis

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen