Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Marktrisiken

19,99 €*

Sofort verfügbar, Lieferzeit: 1-3 Tage

Produktnummer: 18e8ae1478e89b482289ea26dca01abbb1
Autor: Kremer, Jürgen
Themengebiete: CAPM Expected Shortfall Finanzmathematik Aufgaben Finanzmathematik Lösungen Marktrisiko Portfoliotheorie Risikomaße Value at Risk quantitative finance
Veröffentlichungsdatum: 25.01.2018
EAN: 9783662560181
Auflage: 1
Sprache: Deutsch
Seitenzahl: 173
Produktart: Kartoniert / Broschiert
Verlag: Springer Berlin
Untertitel: Portfoliotheorie und Risikomaße
Produktinformationen "Marktrisiken"
In diesem Buch werden Konzepte zur Quantifizierung von Marktrisiken dargestellt. Im Rahmen der im ersten Kapitel vorgestellten Portfoliotheorie werden Kapitalanlagen charakterisiert, die nach Vorgabe eines Risikos eine möglichst hohe erwartete Rendite versprechen. Risiko wird hier definiert als die Standardabweichung der Portfoliorendite. Für arbitragefreie Ein-Perioden-Modelle lassen sich optimale Portfolios auch mithilfe von Wahrscheinlichkeitsdichten explizit angeben, und die Martingalmaße vollständiger arbitragefreier Marktmodelle lassen sich umgekehrt mithilfe des Marktportfolios und der Kovarianzmatrix der klassischen Portfoliotheorie darstellen, was im zweiten Kapitel ausgeführt wird. Im dritten Kapitel wird das wichtige Risikomaß Value at Risk vorgestellt, das den größten Verlust eines Portfolios quantifiziert, der mit einer vorgegebenen Wahrscheinlichkeit in einem vorgegebenen Zeitraum nicht überschritten wird. Neben der Delta-Normal-Methode zur näherungsweisen Berechnung des Value at Risk werden auch auf dieser Methode basierende Zerlegungen des Gesamtrisikos in Teilrisiken und Sensitivitäten des Value at Risk gegenüber Änderungen der Risikofaktoren behandelt. Der Value at Risk macht keine Aussagen über die Verteilung der hohen Verluste und er ist nicht subadditiv. Die Formulierung von Eigenschaften, die ein gutes Risikomaß haben sollte, führt zum Konzept der kohärenten Risikomaße, die im vierten Kapitel zusammen mit ihrem wichtigsten Vertreter, dem Expected Shortfall, vorgestellt werden. Der Expected Shortfall wird als kohärent nachgewiesen, und seine Berechnung wird für normalverteilte und lognormalverteilte Auszahlungen explizit angegeben.Jedes Kapitel endet mit einer Reihe von Aufgaben, für die sich im letzten Kapitel vollständige Lösungen finden.

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen