Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Machine Learning in Social Networks

69,54 €*

Sofort verfügbar, Lieferzeit: 1-3 Tage

Produktnummer: 185a94f2f9c9894361b59e25cd7bb2c1cc
Autor: Aggarwal, Manasvi Murty, M.N.
Themengebiete: Complex networks Deep Learning (DL) Embedded graphs Embedded node Information networks Mapping function Network embedding Network representation learning Neural Networks Protein-protein interaction networks
Veröffentlichungsdatum: 25.11.2020
EAN: 9789813340220
Sprache: Englisch
Seitenzahl: 112
Produktart: Unbekannt
Verlag: Springer Singapore
Untertitel: Embedding Nodes, Edges, Communities, and Graphs
Produktinformationen "Machine Learning in Social Networks"
This book deals with network representation learning. It deals with embedding nodes, edges, subgraphs and graphs. There is a growing interest in understanding complex systems in different domains including health, education, agriculture and transportation. Such complex systems are analyzed by modeling, using networks that are aptly called complex networks. Networks are becoming ubiquitous as they can represent many real-world relational data, for instance, information networks, molecular structures, telecommunication networks and protein–protein interaction networks. Analysis of these networks provides advantages in many fields such as recommendation (recommending friends in a social network), biological field (deducing connections between proteins for treating new diseases) and community detection (grouping users of a social network according to their interests) by leveraging the latent information of networks. An active and important area ofcurrent interest is to come out with algorithms that learn features by embedding nodes or (sub)graphs into a vector space. These tasks come under the broad umbrella of representation learning. A representation learning model learns a mapping function that transforms the graphs' structure information to a low-/high-dimension vector space maintaining all the relevant properties.

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen