Produktnummer:
188b403f50ce8c4dcab3d83946c8e89bba
Themengebiete: | Artificial Neural Network Carbon Fiber-Reinforced Laminates Composite Material Design Fracture Toughness Prediction Glass Fiber Reinforced Polymer (GFRP) Machine Learning (ML) Materials Modelling Natural Fiber Biocomposite Particulate Polymer Composite Silica-Filled Polymer Composite |
---|---|
Veröffentlichungsdatum: | 30.11.2022 |
EAN: | 9789811962776 |
Sprache: | Englisch |
Seitenzahl: | 198 |
Produktart: | Gebunden |
Herausgeber: | Kushvaha, Vinod Madhushri, Priyanka Sanjay, M. R. Siengchin, Suchart |
Verlag: | Springer Singapore |
Produktinformationen "Machine Learning Applied to Composite Materials"
This book introduces the approach of Machine Learning (ML) based predictive models in the design of composite materials to achieve the required properties for certain applications. ML can learn from existing experimental data obtained from very limited number of experiments and subsequently can be trained to find solutions of the complex non-linear, multi-dimensional functional relationships without any prior assumptions about their nature. In this case the ML models can learn from existing experimental data obtained from (1) composite design based on various properties of the matrix material and fillers/reinforcements (2) material processing during fabrication (3) property relationships. Modelling of these relationships using ML methods significantly reduce the experimental work involved in designing new composites, and therefore offer a new avenue for material design and properties. The book caters to students, academics and researchers who are interested in the field of materialcomposite modelling and design.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen