Long-Term Health State Estimation of Energy Storage Lithium-Ion Battery Packs
Produktnummer:
18f2fd9dd5da304cb681154094396691d4
Autor: | Chen, Zonghai Fernandez, Carlos Huang, Qi Stroe, Daniel-I. Wang, Shunli Xiong, Ran |
---|---|
Themengebiete: | Back propagation neural network Battery characteristics Battery health state Electrochemical model Energy storage Extended single particle model Lithium-ion battery Machine learning Multi-cell model of battery pack Parameter identification |
Veröffentlichungsdatum: | 19.08.2023 |
EAN: | 9789819953431 |
Sprache: | Englisch |
Seitenzahl: | 92 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Singapore |
Produktinformationen "Long-Term Health State Estimation of Energy Storage Lithium-Ion Battery Packs"
This book investigates in detail long-term health state estimation technology of energy storage systems, assessing its potential use to replace common filtering methods that constructs by equivalent circuit model with a data-driven method combined with electrochemical modeling, which can reflect the battery internal characteristics, the battery degradation modes, and the battery pack health state. Studies on long-term health state estimation have attracted engineers and scientists from various disciplines, such as electrical engineering, materials, automation, energy, and chemical engineering. Pursuing a holistic approach, the book establishes a fundamental framework for this topic, while emphasizing the importance of extraction for health indicators and the significant influence of electrochemical modeling and data-driven issues in the design and optimization of health state estimation in energy storage systems. The book is intended for undergraduate and graduate students who are interested in new energy measurement and control technology, researchers investigating energy storage systems, and structure/circuit design engineers working on energy storage cell and pack.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen