Laplacian Eigenvectors of Graphs
Produktnummer:
188bac9036a2d645f48285ab0be8829408
Autor: | Biyikoglu, Türker Leydold, Josef Stadler, Peter F. |
---|---|
Themengebiete: | Eigenvector Graph Perron-Frobenius Theorem algorithms combinatorics discrete Dirichlet problem graph Laplacian matrix theory nodal domain vertices |
Veröffentlichungsdatum: | 26.07.2007 |
EAN: | 9783540735090 |
Sprache: | Englisch |
Seitenzahl: | 120 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Berlin |
Untertitel: | Perron-Frobenius and Faber-Krahn Type Theorems |
Produktinformationen "Laplacian Eigenvectors of Graphs"
Eigenvectors of graph Laplacians have not, to date, been the subject of expository articles and thus they may seem a surprising topic for a book. The authors propose two motivations for this new LNM volume: (1) There are fascinating subtle differences between the properties of solutions of Schrödinger equations on manifolds on the one hand, and their discrete analogs on graphs. (2) “Geometric” properties of (cost) functions defined on the vertex sets of graphs are of practical interest for heuristic optimization algorithms. The observation that the cost functions of quite a few of the well-studied combinatorial optimization problems are eigenvectors of associated graph Laplacians has prompted the investigation of such eigenvectors.The volume investigates the structure of eigenvectors and looks at the number of their sign graphs (“nodal domains”), Perron components, graphs with extremal properties with respect to eigenvectors. The Rayleigh quotient and rearrangement of graphs form the main methodology.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen