Iterative Methods for Fixed Point Problems in Hilbert Spaces
Produktnummer:
18730f6710db98482fb906daf67dbd55bb
Autor: | Cegielski, Andrzej |
---|---|
Themengebiete: | 47-02, 49-02, 65-02, 90-02, 47H09, 47J25, 37C25, 65F10 fixed point projection methods quasi-nonexpansive operator |
Veröffentlichungsdatum: | 13.09.2012 |
EAN: | 9783642309007 |
Sprache: | Englisch |
Seitenzahl: | 298 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Berlin |
Produktinformationen "Iterative Methods for Fixed Point Problems in Hilbert Spaces"
Iterative methods for finding fixed points of non-expansive operators in Hilbert spaces have been described in many publications. In this monograph we try to present the methods in a consolidated way. We introduce several classes of operators, examine their properties, define iterative methods generated by operators from these classes and present general convergence theorems. On this basis we discuss the conditions under which particular methods converge. A large part of the results presented in this monograph can be found in various forms in the literature (although several results presented here are new). We have tried, however, to show that the convergence of a large class of iteration methods follows from general properties of some classes of operators and from some general convergence theorems.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen