Integral Geometry and Inverse Problems for Hyperbolic Equations
Produktnummer:
188be3534748d84ab98eb16707eee97b96
Autor: | Romanov, V. G. |
---|---|
Themengebiete: | Hyperbolic Equations Integral Integralgeometrie Partielle Differentialgleichung differential equation equation function space geometry |
Veröffentlichungsdatum: | 19.01.2012 |
EAN: | 9783642807831 |
Sprache: | Englisch |
Seitenzahl: | 154 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Berlin |
Produktinformationen "Integral Geometry and Inverse Problems for Hyperbolic Equations"
There are currently many practical situations in which one wishes to determine the coefficients in an ordinary or partial differential equation from known functionals of its solution. These are often called "inverse problems of mathematical physics" and may be contrasted with problems in which an equation is given and one looks for its solution under initial and boundary conditions. Although inverse problems are often ill-posed in the classical sense, their practical importance is such that they may be considered among the pressing problems of current mathematical re search. A. N. Tihonov showed [82], [83] that there is a broad class of inverse problems for which a particular non-classical definition of well-posed ness is appropriate. This new definition requires that a solution be unique in a class of solutions belonging to a given subset M of a function space. The existence of a solution in this set is assumed a priori for some set of data. The classical requirement of continuous dependence of the solution on the data is retained but it is interpreted differently. It is required that solutions depend continuously only on that data which does not take the solutions out of M.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen