Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Identification of the Current State of a Battery using Impedance Measurements

42,00 €*

Sofort verfügbar, Lieferzeit: 1-3 Tage

Produktnummer: 18b81b5b704e034a15b3913dbf00c5a24f
Autor: Felder, Marian Patrik
Themengebiete: Impedance Lithium Ion Battery State of Charge
Veröffentlichungsdatum: 03.04.2025
EAN: 9783843955928
Sprache: Englisch
Seitenzahl: 175
Produktart: Kartoniert / Broschiert
Verlag: Dr. Hut
Produktinformationen "Identification of the Current State of a Battery using Impedance Measurements"
The role of electric vehicles (EVs) in public and private transportation is being redefined. Motivated by the current and looming climate crisis, EVs are seen as a bridge technology to more energy-efficient modes of transportation. A key aspect of widespread adoption is meeting the expectations of users who are accustomed to the comfort, safety and range of a gasoline-powered car. To achieve this, an accurate understanding of the current state of the battery is essential. As battery science has progressed, better cell types have been developed, each with its own unique characteristics and challenges. While lithium ion battery cells are very much discussed as the best available technology for energy storage in EVs, some conventional state of charge (SoC) detection methods are not applicable. This thesis investigates the use of impedance-based SoC estimation in EVs. This work focuses on battery state detection based on a cell model and test drive measurements. A method is proposed that aims to overcome the shortcomings of the traditionally used Fourier transform (FT) with respect to the effects caused by signals occurring simultaneously with the SoC measurements in the on-board power supply network. While the performance in this particular aspect does not exceed that of the FT, the low losses on gappy time series signals prove to be an outstanding advantage of the proposed method. The investigations are based on artificial and measured data. As an SoC classification method, a Naive Bayes classifier is applied, using the output of the proposed algorithm as input features.

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen