Hyperbolic Systems with Analytic Coefficients
Produktnummer:
184b2b26d68d5248a0842f6175673a770f
Autor: | Nishitani, Tatsuo |
---|---|
Themengebiete: | 35L45,35L40,35L55 Cauchy problem Hyperbolic systems Real analytic coefficients Strongly hyperbolic Well-posedness partial differential equations |
Veröffentlichungsdatum: | 05.12.2013 |
EAN: | 9783319022727 |
Sprache: | Englisch |
Seitenzahl: | 237 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Untertitel: | Well-posedness of the Cauchy Problem |
Produktinformationen "Hyperbolic Systems with Analytic Coefficients"
This monograph focuses on the well-posedness of the Cauchy problem for linear hyperbolic systems with matrix coefficients. Mainly two questions are discussed:(A) Under which conditions on lower order terms is the Cauchy problem well posed?(B) When is the Cauchy problem well posed for any lower order term?For first order two by two systems with two independent variables with real analytic coefficients, we present complete answers for both (A) and (B). For first order systems with real analytic coefficients we prove general necessary conditions for question (B) in terms of minors of the principal symbols. With regard to sufficient conditions for (B), we introduce hyperbolic systems with nondegenerate characteristics, which contain strictly hyperbolic systems, and prove that the Cauchy problem for hyperbolic systems with nondegenerate characteristics is well posed for any lower order term. We also prove that any hyperbolic system which is close to a hyperbolic system with a nondegenerate characteristic of multiple order has a nondegenerate characteristic of the same order nearby.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen