Hyperbolic Manifolds and Discrete Groups
Produktnummer:
18e004a5c1d5b34f6cb256ac3152dd9a26
Autor: | Kapovich, Michael |
---|---|
Themengebiete: | 3-dimensional topology Compactification Group theory Homeomorphism Kleinian groups Otal's proof Rips theory Thurston's hyperbolization theorem complex analysis foliation |
Veröffentlichungsdatum: | 28.10.2009 |
EAN: | 9780817649128 |
Sprache: | Englisch |
Seitenzahl: | 470 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Birkhäuser Boston |
Produktinformationen "Hyperbolic Manifolds and Discrete Groups"
The main goal of the book is to present a proof of the following. Thurston's Hyperbolization Theorem ("The Big Monster"). Suppose that M is a compact atoroidal Haken 3-manifold that has zero Euler characteristic. Then the interior of M admits a complete hyperbolic metric of finite volume. This theorem establishes a strong link between the geometry and topology 3 of 3-manifolds and the algebra of discrete subgroups of Isom(JH[ ). It completely changed the landscape of 3-dimensional topology and theory of Kleinian groups. Further, it allowed one to prove things that were beyond the reach of the standard 3-manifold technique as, for example, Smith's conjecture, residual finiteness of the fundamental groups of Haken manifolds, etc. In this book we present a complete proof of the Hyperbolization Theorem in the "generic case." Initially we planned 1 including a detailed proof in the remaining case of manifolds fibered over § as well. However, since Otal's book [Ota96] (which treats the fiber bundle case) became available, only a sketch of the proof in the fibered case will be given here.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen