Homologie des algebres commutatives
Produktnummer:
18f3a624e2971e4b39bc351e6b58a99b42
Autor: | Andre, M. |
---|---|
Themengebiete: | Homologie Kommutative Algebra algebra commutative algebra homomorphism homotopy |
Veröffentlichungsdatum: | 04.01.2018 |
EAN: | 9783642514500 |
Sprache: | Französisch |
Seitenzahl: | 15 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer Berlin |
Produktinformationen "Homologie des algebres commutatives"
(egalite 3. 4). Ce complexe T*(A,B) per met de definir les modules d'homo logie de l'algebre (definition 3. 11) Hn(A,B, W) = Yt,,[T*(A,B)@B W] et les modules de cohomologie de l'algebre (definition 3. 12) Hn(A,B, W) = Yfn[HomB(T*(A,B), W)]. En particulier l'homologie et la cohomologie d'une algebre libre sont triviales (corollaire 3. 36). Quant au module Ho(A,B,B) il est toujours isomorphe au module des differentielles de Kaehler QBIA (proposition 6. 3). Lorsque l'anneau Best un quotient de l'anneau A, la situation est simple en degre 1 (proposition 6. 1) H (A, B, W) ~ Tor}(B, W) I et en degre 2 (theoreme 15. 8, propositions 15. 9 et 15. 12) H (A,B, W) ~ Tor1(B, W)jTor}(B,B). Tor}(B, W). 2 En ajoutant des variables independantes a l'anneau A, il est d'ailleurs possible de se ramener a ce cas particulier (corollaire 5. 2). Dans cette theorie, les modules d'homologie relative sont en fait des modules d'homologie absolue. De maniere precise: a une A-algebre B et a une B-algebre C correspond une suite exacte, dite de Jacobi Zariski (theoreme 5. 1) . . . --+ Hn(A,B, W) --+ Hn(A, C, W) --+ Hn(B, C, W) -+ H _ I (A, B, W) --+ •••• n De cette suite decoulent des relations entre differentielles de Kaehler (n = 0), algebres lisses (n = 1), anneaux reguliers (n = 2) et intersections completes (n = 3). Une autre propriete fondamentale est la suivante (proposition 4.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen