High-Dimensional Covariance Matrix Estimation
Produktnummer:
18f4daafb7cc904fde8e302b88e55ae578
Autor: | Zagidullina, Aygul |
---|---|
Themengebiete: | big data covariance matrix estimation high-dimensional asymptotics high-dimensional covariance matrix estimation high-dimensional statistics linear spectral statistics for high-dimensional inference random matrix theory sample covariance matrix estimator shrinkage estimation of covariance matrices statistical inference |
Veröffentlichungsdatum: | 29.10.2021 |
EAN: | 9783030800659 |
Sprache: | Englisch |
Seitenzahl: | 115 |
Produktart: | Unbekannt |
Verlag: | Springer International Publishing |
Untertitel: | An Introduction to Random Matrix Theory |
Produktinformationen "High-Dimensional Covariance Matrix Estimation"
This book presents covariance matrix estimation and related aspects of random matrix theory. It focuses on the sample covariance matrix estimator and provides a holistic description of its properties under two asymptotic regimes: the traditional one, and the high-dimensional regime that better fits the big data context. It draws attention to the deficiencies of standard statistical tools when used in the high-dimensional setting, and introduces the basic concepts and major results related to spectral statistics and random matrix theory under high-dimensional asymptotics in an understandable and reader-friendly way. The aim of this book is to inspire applied statisticians, econometricians, and machine learning practitioners who analyze high-dimensional data to apply the recent developments in their work.

Sie möchten lieber vor Ort einkaufen?
Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.
Juristische Fachbuchhandlung
Georg Blendl
Parcellistraße 5 (Maxburg)
8033 München
Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen