Haben Sie Fragen? Einfach anrufen, wir helfen gerne: Tel. 089/210233-0
oder besuchen Sie unser Ladengeschäft in der Pacellistraße 5 (Maxburg) 80333 München
+++ Versandkostenfreie Lieferung innerhalb Deutschlands
Haben Sie Fragen? Tel. 089/210233-0

Hardware-Aware Probabilistic Machine Learning Models

64,19 €*

Sofort verfügbar, Lieferzeit: 1-3 Tage

Produktnummer: 18880b4c18fd9f4b279b7ad53d458d7e01
Autor: Galindez Olascoaga, Laura Isabel Meert, Wannes Verhelst, Marian
Themengebiete: Deep Learning Deep Neural Networks Hardware-Aware Probabilistic Circuits Machine Learning extreme-edge computing
Veröffentlichungsdatum: 21.05.2022
EAN: 9783030740443
Sprache: Englisch
Seitenzahl: 163
Produktart: Kartoniert / Broschiert
Verlag: Springer International Publishing
Untertitel: Learning, Inference and Use Cases
Produktinformationen "Hardware-Aware Probabilistic Machine Learning Models"
This book proposes probabilistic machine learning models that represent the hardware properties of the device hosting them. These models can be used to evaluate the impact that a specific device configuration may have on resource consumption and performance of the machine learning task, with the overarching goal of balancing the two optimally. The book first motivates extreme-edge computing in the context of the Internet of Things (IoT) paradigm. Then, it briefly reviews the steps involved in the execution of a machine learning task and identifies the implications associated with implementing this type of workload in resource-constrained devices. The core of this book focuses on augmenting and exploiting the properties of Bayesian Networks and Probabilistic Circuits in order to endow them with hardware-awareness. The proposed models can encode the properties of various device sub-systems that are typically not considered by other resource-aware strategies, bringing about resource-saving opportunities that traditional approaches fail to uncover.The performance of the proposed models and strategies is empirically evaluated for several use cases. All of the considered examples show the potential of attaining significant resource-saving opportunities with minimal accuracy losses at application time. Overall, this book constitutes a novel approach to hardware-algorithm co-optimization that further bridges the fields of Machine Learning and Electrical Engineering.

Sie möchten lieber vor Ort einkaufen?

Sie haben Fragen zu diesem oder anderen Produkten oder möchten einfach gerne analog im Laden stöbern? Wir sind gerne für Sie da und beraten Sie auch telefonisch.

Juristische Fachbuchhandlung
Georg Blendl

Parcellistraße 5 (Maxburg)
8033 München

Montag - Freitag: 8:15 -18 Uhr
Samstags geschlossen